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Abstract

Left-right (L-R) asymmetry of visceral organs in animals is established
during embryonic development via a stepwise process. While some steps
are conserved, different strategies are employed among animals for
initiating the breaking of body symmetry. In zebrafish (teleost), Xenopus
(amphibian), and mice (mammal), symmetry breaking is elicited by
directional fluid flow at the L-R organizer, which is generated by motile cilia
and sensed by mechanoresponsive cells. In contrast, birds and reptiles do
not rely on the cilia-driven fluid flow. Invertebrates such as Drosophila and
snails employ another distinct mechanism, where the symmetry breaking
process is underpinned by cellular chirality acquired downstream of the
molecular interaction of myosin and actin. Here, we highlight the
convergent entry point of actomyosin interaction and planar cell polarity to
the diverse L-R symmetry breaking mechanisms among animals.
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Introduction

The body of bilaterian animals is patterned in three axes:
anterior-posterior (A-P), dorsoventral (D-V), and left-right (L-R),
with L-R patterning often the last to be discerned following
the breaking of bilateral symmetry. While bilaterian animals
are superficially L-R symmetric, some internal organs are L-R
asymmetric in terms of their shape, size, or position. Such L-R
asymmetry is essential for the organs, such as the heart and the
gut, to function properly. For instance, abnormal L-R asymme-
try in humans and mice results in laterality defects of visceral
organs often associated with severe dysfunction of the malformed
heart. How L-R asymmetry is established during development has
been studied in a variety of model animals'~. The Nodal path-
way acts as the left-side determinant in all vertebrates examined,
as well as in some invertebrates. The molecular functionality
of L-R patterning is relatively conserved, but the symmetry
breaking mechanisms appear to be different among animals™*.

Cilia-dependent L-R symmetry breaking in the fish,
frog, and mouse

The L-R organizer (LRO) is an embryonic structure where
L-R symmetry breaking takes place. It is located at the ventral
node in the mouse, Hensen’s node in the chicken, the gastro-
coel roof plate in the frog (Xenopus), and Kupffer’s vesicle in
zebrafish. The LRO of fish, amphibians, and mammals has motile

Birds, Reptiles
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cilia, with about 200 motile cilia in the mouse LRO, which
rotate to generate the directional fluid flow across the LRO**°
The fluid flow may elicit a chemosensory® or mechanosensory’
response from ciliated cells on one side of the LRO by activat-
ing the Ca* and polycystin channels® ", which generates a lat-
erality cue for asymmetric tissue patterning. Nodal expression at
the LRO is overtly bilaterally symmetric at the LRO, while the
level of Nodal mRNA at the LRO of the mouse embryo shows
subtle L-R asymmetry''. This asymmetry is, however, not essen-
tial for subsequent events'”. In contrast, mRNA for Cerl2/Cer2/
Dand5 (encoding a Nodal antagonist) is more evidently L-R
asymmetric at LRO". Cerl2 mRNA is initially equal on both
sides of the LRO, but, following the action of directional flow,
Cerl2 mRNA is repressed on the left side by an unknown mech-
anism that degrades the mRNA, resulting in more abundant
Cerl2 mRNA on the right side'*"”. This would implicate a higher
Nodal activity on the left side of the LRO (Figure 1). This L-R
asymmetric Nodal activity will be transmitted to the lateral
plate mesoderm and activates the Nodal-Pitx2 cascade on the
left side that confers laterality of the body plan. This molecu-
lar strategy of L-R asymmetry is common to fish, amphib-
ians, and mammals (Figure 1). However, LRO morphology varies
substantially among mammals'®, and it has been suggested'’
that the LRO of the pig embryo does not have sufficient space
for motile cilia to generate the fluid flow. While it is generally

Fish, Frog, Mammals

Molecular and cellular chirality ?
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Nodal activity at LRO: L>>R

Figure 1. The molecular cascade of cilia dependent and non-dependent mechanisms leading to the asymmetric Nodal activity in
the left-right organizer (LRO) of the vertebrate embryos. Nodal activity (red), Cerl2 activity (green). Note that both mechanisms result in

asymmetric (L>R) Nodal activity at the LRO.
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accepted that the mechanism of L-R symmetry breaking is
conserved in the mammal, variations of the theme may be
anticipated.

Cilia-independent L-R symmetry breaking in birds
and reptiles

Other animals deploy a mechanism of L-R symmetry breaking
that is independent of motile cilia and fluid flow'’. In the chick,
motile cilia are absent on the dorsal (luminal) side of Hensen’s
node, the avian LRO. The avian talpid2 mutant, in which
the gene encoding C2CD3 that is essential for ciliogenesis is
disrupted, manifests a ciliopathy phenotype (polydactyly and
facial clefting), but no laterality defects'®. This indicates that
cilia function is not required for L-R symmetry breaking in the
chick. Instead, asymmetric (leftward) movement of cells around
Hensen’s node accompanies L-R symmetry breaking. Such
cellular rearrangement results in the asymmetric emplacement
of Sonic hedgehog (Shh) and fibroblast growth factor 8 (FGFS)
expressing cells, and thereby gives rise to nonequivalent
signaling activity that breaks the bilateral symmetry.

Similarly, reptiles such as the Madagascar ground gecko and
Chinese softshell turtle employ a cilia-independent mechanism
for L-R symmetry breaking'’. The LRO of reptilian embryos is
likely to reside at the blastopore, since the blastopore is equiva-
lent to the Hensen’s node in birds*”'. Interestingly, Cerl2, a
target gene of the fluid flow in cilia-dependent vertebrates, is
absent in the genome of reptiles and birds, suggesting that
the Cerl2 gene may have been lost during evolution. In the
cilia-independent vertebrates, Nodal expression at the LRO is
inherently asymmetric (L>>R), rendering higher Nodal activ-
ity at the left side of the LRO (Figure 1)*, which may have
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eliminated the requisite function of the fluid flow driven by
motile cilia. Therefore, the cilia-dependent and -independent
vertebrates employ different strategies to achieve a common
outcome: L-R asymmetric (left-sided) Nodal activity at the LRO
(Figure 1).

However, there are differences between chick and reptile
embryos. Unlike in chick embryos, the expression of Shh and
Fgf8 in reptile embryos was bilaterally comparable initially>.
It would be imperative to understand the mechanism that
leads subsequently to L-R asymmetric Nodal expression at the
reptilian LRO.

Distinct mechanisms in invertebrates: Drosophila
and snails

Snails are spiralians that display directional coiling of the
shell, a vivid example of L-R asymmetry in animals™. As in
other organisms, this asymmetry (chirality) is regulated by left-
sided expression of Nodal and Pitx2 at embryonic stages™.
However, the event that determines the direction of shell coil-
ing takes place at a very early stage (Figure 2). Snails undergo
a unique spiral cleavage at the third to fifth cell divisions, and
the handedness of the spiral cleavage at this early stage deter-
mines the direction of shell coiling at a later stage”’°. At the
third cell division (from the four- to eight-cell stage), embryos
with a quartet of micromeres that rotates in a clockwise direc-
tion relative to their sister macromeres will develop into dextral
individuals. In contrast, those with micromeres rotating in an
anticlockwise direction become sinistral embryos. Mechanical
manipulation of the third-cleavage chirality (for example, by
continuous pushing of the first quartet of micromeres being
generated in the direction opposite to the normal direction with

Common theme to . ) Vertebrates
achieve: Drosophila Snail (fish, amphibians, mammals)
(Macro)Molecular Myogin;d Formin/Actin Cilia
chirality Actin l
Nodal-Pitx2
v
v
Cellular chirality Cell shape Cell division plane Cell shape (gut, heart etc)
Nodal-Pitx2
y
v 1
Organismal chirality Gut Shell coiling Visceral organs

Figure 2. Distinct mechanism of the specification of left-right asymmetry of organs and whole organism in Drosophila, snails, and
vertebrates. Note that different animal species use variations of the common theme (in the left-hand box) to establish L-R asymmetry. See
the text for details.
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glass rods) can reverse not only the left-sided Nodal expres-
sion in the manipulated embryo but also the direction of shell
coiling”, suggesting that, in the snail embryo, micromere
chirality drives the asymmetry context of Nodal activity.

Genetics has shown that L-R asymmetry in snails may be
determined by a single gene (or a single locus) that functions
maternally”*”. The genus Lymnaea is dimorphic, with both
dextral (the dominant type) and sinistral (the recessive type)
individuals existing within a given species. The identity of this
L-R determining gene is not known, but it might be expected
to regulate cytoskeletal dynamics at early development.
Of note in this regard is that Formin, a Diaphanous-related
protein that associates with filament tips and mediates the
elongation of actin filaments, can impact on the direction of
shell coiling in the pond snail and in the freshwater snail
Lymnaea stagnalis®' (Figure 2). Formin mRNA is asymmetri-
cally distributed to one macromere at the two-cell and four-cell
stages’'. These observations suggest that Formin may be the
chiral molecule responsible for L-R symmetry breaking in snails.

L-R asymmetry in Drosophila is manifested by the rotation
of male genitalia and looping of the larval and adult gut. In
Drosophila males, the genital plate undergoes a 360-degree
clockwise (when viewed from the posterior side) rotation dur-
ing the pupal stage™. This clockwise (dextral) direction is
preserved among the Drosophilidae, while no sinistral spe-
cies is known so far. The embryonic hindgut in Drosophila is
formed initially as a bilaterally symmetric structure, but it later
undergoes a 90-degree anticlockwise (when viewed from the
posterior side) rotation that subsequently results in dextral loop-
ing. The adult gut, which develops from larval primordia,
also shows directional looping. It may be noted that a similar
pattern of rotation of the epithelium lining the anterior intesti-
nal portal that heralds the directionality of rotation of the foregut
and the adjacent heart tube is found in the mouse embryo™.

Genetic screening of mutants with altered L-R asymmetry
has identified the Myo3IDF gene as a general L-R determi-
nant in Drosophila*** (Figure 2). The direction of rotation of
the male genitalia and the embryonic gut as well as the looping
of the adult hindgut were all reversed in the Myo3IDF mutant.
Myo31DF encodes a type ID unconventional myosin (Myo31DF,
also known as MyolD), an actin-based motor protein that is
expressed in the gut epithelium. Both calmodulin binding and
ATP-binding motifs of the Myo31DF protein appear to be essen-
tial for its function in L-R asymmetric organ development.
Myo31DF binds B-catenin and the atypical cadherin Dachsous*®
and is associated with DE-cadherin (Drosophila E-cadherin)
via B-catenin®. The interaction of Myo31DF with the intra-
cellular domain of Dachsous is required for embryonic gut
looping®™. The Myo31DF-Dachsous interaction may promote
the transfer of L-R information to neighboring precursor cells
of the hindgut.

Hindgut epithelial cells manifest L-R asymmetry** even before
the embryonic hindgut begins its directional rotation, with
the cell boundary surfaces showing more leftward-tilt than
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rightward-tilt at the cell boundaries. Furthermore, the centro-
some is preferentially located in the right-posterior region of
hindgut epithelial cells, and DE-cadherin is more abundant along
the leftward-tilted cell boundaries. Such asymmetry (planar cell
shape chirality) disappears after the gut rotation is complete,
and it is reversed in the Myo3IDF mutant, suggesting that
this intrinsic cell chirality is responsible for L-R asymmetric
morphogenesis. In a similar context, epithelial cells of the male
genitalia exhibit chirality before directional rotation®’, with more
rightward-tilted cell boundaries and a higher distribution of
myosin II along the rightward boundaries. A recent study implied
that the planar cell shape chirality may lead to cell sliding,
whereby epithelial cells change their position relative to their
neighbors by directional displacement while maintaining cell—
cell contact, during the rotation of the embryonic hindgut®.
The asymmetric cell sliding converts the global pattern of cell
chirality into directional twisting of the epithelial tube and pos-
sibly the rotation of the male genitalia. Misexpression of Myold
in Drosophila reversed the directional twisting of cells, organs,
and the whole body, suggesting that Myold may be instrumental
for generating chiral morphology, at least in Drosophila*'.

Of interest, myosin 1d, the ortholog of Drosophila Myo31DF,
is also required for laterality in Xenopus” and zebrafish**.
Myosin 1d in the frog and zebrafish appears to act through the
Planar Cell Polarity (PCP) pathway. Myosin 1d in zebrafish
appears to regulate vacuolar trafficking in epithelial cells of
Kupffer’s vesicle and is required for the formation of this
structure with a proper size and spherical lumen*. These new
findings suggest that the unconventional myosin ortholog acts
as a driver of L-R asymmetry common to the invertebrates and
vertebrates with a ciliated LRO. An exception is found in rats
lacking myosin 1d, which manifest PCP defects in multi-
ciliated airway epithelial cells but body laterality remains
normal®”. The role of the myosin orthologs in L-R asymmetry
thus appears to be largely, but not universally, conserved
between arthropods and chordates.

Does molecular and cellular chirality underpin L-R
asymmetry?

Chirality is manifested in individual cells, even those in cul-
ture. Human umbilical vein endothelial cells, human vascular
mesenchymal cells, and mouse C2C12 myoblasts were found
to generate a chiral pattern when plated on a micropatterned
surface’*. The pattern of chirality was cell line dependent,
with some showing a clockwise and others an anticlockwise
alignment. Of note, the chirality manifested by C2C12 cells
was resistant to the microtubule-disrupting agent nocodazole
but was abolished by the microfilament-disrupting agents
latrunculin A and cytochalasin D, suggesting that cell chiral-
ity depends on actomyosin function but not on microtubules.
Cultured cells also show chirality in their motion, with
melanophores from zebrafish” and fibroblasts from human
foreskin® manifesting chiral swirling. Such unidirectional rota-
tional movement appeared to depend on the actin cytoskel-
eton, in particular on Formin-mediated polymerization of actin,
but not influenced by microtubules. Immobilized Formin has
been shown to mediate the rotation of helical actin filaments
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in a clockwise direction relative to itself”, and this clockwise
rotation may lead to a rightward tilting of actin fibers. It is tempt-
ing to speculate that such intracellular chirality elicits L-R
asymmetry of organs. Of interest, cardiac cells in the develop-
ing chick embryo also show intrinsic chirality and a rightward
polarization of the Golgi complex™. The intracellular chirality
may also underpin L-R asymmetry of the whole organism,
which may indeed be the case at least in some animals such as
Drosophila and snails.

Outstanding issues

We have now gleaned a better understanding of the construc-
tion and the putative mode of action of the LRO of vertebrate
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embryos for the specification of L-R asymmetry of organs and
the body. From the vantage point of recent knowledge of L-R
asymmetry of the invertebrates, several pressing issues would
demand further clarification. They include the following: (i) what
is the precise function of myosin 1d in Drosophila? How does
it induce cellular chirality? (ii) How does Formin-regulated
symmetry breaking lead to asymmetric expression of Nodal
in snails? (iii) Are myosin 1d and an actin regulator, such as
Formin, involved in L-R symmetry breaking in amniotes?
If they are involved, what is their precise role, and is this the ori-
gin of L-R asymmetry? (iv) How do non-mammalian amniotes
(reptiles and birds) break L-R symmetry without motile cilia
and directional fluid flow?
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